Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease☆
نویسندگان
چکیده
Detection of Alzheimer's disease (AD) at the first stages of the pathology is an important task to accelerate the development of new therapies and improve treatment. Compared to AD detection, the prediction of AD using structural MRI at the mild cognitive impairment (MCI) or pre-MCI stage is more complex because the associated anatomical changes are more subtle. In this study, we analyzed the capability of a recently proposed method, SNIPE (Scoring by Nonlocal Image Patch Estimator), to predict AD by analyzing entorhinal cortex (EC) and hippocampus (HC) scoring over the entire ADNI database (834 scans). Detection (AD vs. CN) and prediction (progressive - pMCI vs. stable - sMCI) efficiency of SNIPE were studied using volumetric and grading biomarkers. First, our results indicate that grading-based biomarkers are more relevant for prediction than volume-based biomarkers. Second, we show that HC-based biomarkers are more important than EC-based biomarkers for prediction. Third, we demonstrate that the results obtained by SNIPE are similar to or better than results obtained in an independent study using HC volume, cortical thickness, and tensor-based morphometry, individually and in combination. Fourth, a comparison of new patch-based methods shows that the nonlocal redundancy strategy involved in SNIPE obtained similar results to a new local sparse-based approach. Finally, we present the first results of patch-based morphometry to illustrate the progression of the pathology.
منابع مشابه
SNIPE: A New Method to Identify Imaging Biomarker for Early Detection of Alzheimer’s Disease
While the automatic detection of AD has been widely studied, the problem of the prediction of AD (or its early detection) has been less investigated. This might be explained by the fact that the prediction problem is clearly more challenging since the anatomical changes are more subtle. However, from a clinical point of view the prediction of AD is the key question since it is in that moment wh...
متن کاملSimultaneous segmentation and grading of anatomical structures for patient's classification: Application to Alzheimer's disease
In this paper, we propose an innovative approach to robustly and accurately detect Alzheimer's disease (AD) based on the distinction of specific atrophic patterns of anatomical structures such as hippocampus (HC) and entorhinal cortex (EC). The proposed method simultaneously performs segmentation and grading of structures to efficiently capture the anatomical alterations caused by AD. Known as ...
متن کاملDetection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملRole of microRNA as a biomarker in Alzheimer’s disease
Introduction: MicroRNAs are small, non-coding, and protected RNA molecules that regulate gene expression after transcription by mRNA degradation or inhibition of protein synthesis. The function of these molecules is critical to many cellular processes, including growth, development, differentiation, homeostasis, apoptosis, aging, stress resistance. In addition, some diseases including cancer, a...
متن کاملDetection of Alzheimer’s Disease in Elder People Using Gait Analysis and Kinect Camera
Introduction: Gait analysis through using modern technology for detection of Alzheimer's disease has found special attention by researchers over the last decade. In this study, skeletal data recorded with a Kinect camera, were used to analyze gait for the purpose of detecting Alzheimer's disease in elders. Method: In this applied-developmental experimental study, using a Kinect camera, data wer...
متن کامل